Biomechanical Considerations in Ultramarathon Running

Guillaume Millet

4th Annual Congress on Medicine & Science in Ultra-Endurance Sports

May 30, 2017
Maximal Sustainable Power

Race tactics

Psychological & Motivational Factors

Running patterns

Equipment

Low-intensity Endurance

High % type I fibers

Running

Energy Cost

Nutrition

Thermal stress

GI disorders

Muscle & osteoarticular damage

Muscle mass

VO_{2max}

Maximal Sustainable Power

Running & Walking Energy Cost

Psychological & Motivational Factors

Ultramarathon Performance

Millet et al.

J Appl Physiol, 2012
Determining factors of Cr

- Muscle efficiency
- Training history
- Anthropometry: legs diameter / mass
- Fatigue
- % body fat
- Neuromuscular & musculo-tendinous capacities
- Flexibility: + / - but rather −
- Technique
- Equipment

Saunders, Sports med, 2004
Effects of ultra-marathon on Cr

Cr in ml O₂ / kg / km

Lazzer et al. (7)
Schena et al. (20)
Millet et al. (11)
Lazzer et al. (81sh)
Lazzer et al. (6)
Fusi et al. (4)
Millet et al. (15)

Change between pre and post ultra-marathon (%)

43-km
60-km
65-km
90-km
90-km
120-km
8500-km
Possible reasons for \uparrow Cr

- Higher ventilation (minor)
- Fatigue \rightarrow MUs recruitment
- Muscle η
- Changes in running patterns
Effects of ultra-marathon on Cr

Cr in ml O₂ / kg / km
- Lazzer et al. (7)
- Schena et al. (20)
- Millet et al. (11)
- Lazzer et al. (8kh)
- Lazzer et al. (6)
- Fusi et al. (4)
- Millet et al. (15)

Cr in J / kg / m
- Schena et al. (20)
- Vernillo et al. (26)
- Vernillo et al. (26)
- Vernillo et al. (26)
- Fusi et al. (4)
- Gimenez et al. (5)
- Vernillo et al. (27)
- Vernillo et al. (27)
- Vernillo et al. (25)
- Vernillo et al. (25)

Change between pre and post ultra-marathon (%)
From Marlene Giandolini PhD thesis
- 5 h hilly run

- 24 h level running (treadmill)

- Ultra-Trail du Mont-Blanc 2012 (104 km / 5,800 m D+)

- Ultra-Trail du Mont-Blanc 2009 (165 km / 8,500 m D+)
- **5 h hilly run**

- **24 h level running (treadmill)**

- **Ultra-Trail du Mont-Blanc 2012 (104 km / 5,800 m D+)**

- **Ultra-Trail du Mont-Blanc 2009 (165 km / 8,500 m D+)**

- **Tor des Geants (335 km / 24,000 D+)**
Tor des Geants

Max altitude : 3200 m

Min altitude : 320 m

Duration (h)

335 km / 24000 m D+
- **5 h hilly run**

- **24 h level running (treadmill)**

- **Ultra-Trail du Mont-Blanc 2012 (104 km / 5,800 m D+)**

- **Ultra-Trail du Mont-Blanc 2009 (165 km / 8,500 m D+)**

- **Tor des Geants (335 km / 24,000 D+)**

- **Running Paris to Beijing (8,500 km)**
Running from Paris to Beijing: biomechanical and physiological consequences

Guillaume Y. Millet · Jean-Benoît Morin · Francis Degache · Pascal Edouard · Léonard Feasson · Julien Verney · Roger Oullion

Philippe Fuchs

8 500 km
161 days
Stride frequency

Duration

<table>
<thead>
<tr>
<th>Event</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 H</td>
<td>~20 H</td>
</tr>
<tr>
<td>UTMB 2012</td>
<td>~26 H</td>
</tr>
<tr>
<td>UTMB 2009</td>
<td>~38 H</td>
</tr>
<tr>
<td>Tor des Geants</td>
<td>~127 H</td>
</tr>
<tr>
<td>Paris-Beijing</td>
<td></td>
</tr>
</tbody>
</table>

Change from Pre to Post (%)

-2 0 2 4 6 8 10

University of Calgary
Center of Mass Downward Displacement

Δz

Change from Pre to Post (%)

5 H 24 H UTMB 2009 Tor des Geants Paris-Beijing
Peak vertical force (Fmax)

- Change from Pre to Post (%)
 - 5 H
 - 24 H
 - UTMB 2009
 - Tor des Geants
 - Paris-Beijing

- Force (N)
 - 0
 - 400
 - 800
 - 1200
 - 1600
 - 2000

- Times (s)
 - 0
 - 0.05
 - 0.1
 - 0.15
 - 0.2
 - 0.25
 - 0.3

- Fmax
Duration seems to matter despite various environmental conditions, terrain, level running vs large elevation changes.
Running from Paris to Beijing: biomechanical and physiological consequences

Guillaume Y. Millet • Jean-Benoît Morin • Francis Degache • Pascal Edouard • Léonard Feasson • Julien Verney • Roger Oullion
Cr was slightly deteriorated

Change in running patterns to protect against running injury despite worsened Cr?
Preferred transition speed

Cost of transport (ml O₂ kg⁻¹ m⁻¹)

Horse 1

○ trot
△ gallop

Horse 2

Horse 3

Peak vertical force (body weights)

Trot-gallop transitions

Critical force

Weighted
Unweighted

Unweighted gallop

Speed (m s⁻¹)

Farley & Taylor
Science 1991
Sacrificing economy to improve running performance—a reality in the ultramarathon?

G. Y. Millet,¹ M. D. Hoffman,² and J. B. Morin¹

¹Université de Lyon, Saint-Etienne, France; and ²Department of Veterans Affairs, Northern California Health Care System and University of California Davis Medical Center, Sacramento, California

Submitted 4 January 2012; accepted in final form 2 April 2012
Endurance

Low intensity

▪ Ability to eat without nausea or GI symptoms
▪ Resistance to muscle & joint damage.

High intensity

▪ Glycogen stores
▪ Anaerobic Threshold

Energy

Economy

Leg tissue

≤ marathon

Ultra-marathon
Energy ↔ Economy ↔ Leg tissue

Pref. stride frequency ↔ Higher stride frequency

Foot strike?
Table 1. Foot strike pattern and sample size at each site.*

<table>
<thead>
<tr>
<th>Foot strike pattern</th>
<th>16.5 km, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFS</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>MFS</td>
<td>29 (7.8)</td>
</tr>
<tr>
<td>Non-RFS</td>
<td>11 (3.0)</td>
</tr>
<tr>
<td>RFS</td>
<td>298 (79.9)</td>
</tr>
<tr>
<td>Mixed RFS/non-RFS</td>
<td>34 (9.1)</td>
</tr>
<tr>
<td>Total†</td>
<td>373</td>
</tr>
</tbody>
</table>

*FFS = forefoot strike; MFS = midfoot strike; RFS = rear-foot strike.
†Nine percent grade.
‡Totals exclude runners with an “unclassified” pattern.
To limit loading rate = be a mid-foot striker?
Midfoot/Rearfoot

Plantar flexors

PRE POST J+2 J+5 J+9 J+16

5H run

<table>
<thead>
<tr>
<th>Foot strike pattern</th>
<th>16.5 km, n (%)</th>
<th>90.3 km, n (%)</th>
<th>161.1 km, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFS</td>
<td>1 (0.3)</td>
<td>3 (1.1)</td>
<td>8 (2.8)</td>
</tr>
<tr>
<td>MFS</td>
<td>29 (7.8)</td>
<td>9 (3.2)</td>
<td>15 (5.3)</td>
</tr>
<tr>
<td>Non-RFS</td>
<td>11 (3.0)</td>
<td>7 (2.5)</td>
<td>5 (1.8)</td>
</tr>
<tr>
<td>RFS</td>
<td>298 (79.9)</td>
<td>251 (89.0)</td>
<td>235 (83.9)</td>
</tr>
<tr>
<td>Mixed RFS/non-RFS</td>
<td>34 (9.1)</td>
<td>12 (4.3)</td>
<td>17 (6.0)</td>
</tr>
<tr>
<td>Total</td>
<td>373</td>
<td>282</td>
<td>280</td>
</tr>
</tbody>
</table>

*FFS = forefoot strike; MFS = midfoot strike; RFS = rear-foot strike.
†Nine percent grade.
‡Totals exclude runners with an “unclassified” pattern.
- Trend toward greater post-race blood CK values among non-RFS runners compared with RFS runners

- No relationship between strike pattern and performance

- However, top 20 finishers had greater use of a non-RFS pattern at 161.1 km than the remaining finishers
Energy ↔ Economy ↔ Leg tissue

Pref. stride frequency ↔ Higher stride frequency

Fore/mid foot strike ↔ Rearfoot strike

Minimalist shoes ↔ Protective shoes
Energy ↔ Economy ↔ Leg tissue

Pref. stride frequency ↔ Higher stride frequency
Fore/mid foot strike ↔ Rearfoot strike
Minimalist shoes ↔ Protective shoes
Without pole ↔ With poles
Less flexible ↔ More flexible
Low muscle mass ↔ Higher muscle mass
Compensating strategy for decrements in propulsive capacity or protective behavior from mechanical stress?
Fatigue in ultra-marathon

Fatigue (strength loss, %PRE)

Duration (h)

Millet Sports Med 2011
Db100

Twitch
Db100

Twitch

Fatigue or pain (DOMS)?
Effects of fatigue only (no DOMS)

Effects of fatigue only (no DOMS)

Table 3 Constant velocity running kinetics, kinematics and spring-mass variables pre- and post-fatigue induced by repeated running sprints

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre</th>
<th>Post</th>
<th>High velocity (20 km h⁻¹)</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>tₖ (s)</td>
<td>0.231 (0.017)</td>
<td>0.231 (0.019)</td>
<td>0.148 (0.008)*</td>
<td>0.150 (0.007)*</td>
<td></td>
</tr>
<tr>
<td>tₐ (s)</td>
<td>0.136 (0.024)</td>
<td>0.131 (0.019)</td>
<td>0.144 (0.015)*</td>
<td>0.145 (0.011)*</td>
<td></td>
</tr>
<tr>
<td>f (Hz)</td>
<td>2.73 (0.10)</td>
<td>2.80 (0.26)</td>
<td>3.44 (0.17)*</td>
<td>3.40 (0.12)*</td>
<td></td>
</tr>
<tr>
<td>Fₘₐₓ (BW)</td>
<td>2.80 (0.26)</td>
<td>2.72 (0.20)</td>
<td>3.33 (0.30)*</td>
<td>3.27 (0.21)*</td>
<td></td>
</tr>
<tr>
<td>Δz (m)</td>
<td>0.068 (0.006)</td>
<td>0.064 (0.008)</td>
<td>0.039 (0.004)*</td>
<td>0.038 (0.004)*</td>
<td></td>
</tr>
<tr>
<td>ΔL (m)</td>
<td>0.113 (0.013)</td>
<td>0.111 (0.020)</td>
<td>0.125 (0.16)*</td>
<td>0.128 (0.15)*</td>
<td></td>
</tr>
<tr>
<td>kₜᵥₑₙₜ (kN m⁻¹)</td>
<td>29.4 (4.0)</td>
<td>30.6 (5.8)</td>
<td>60.4 (7.1)*</td>
<td>61.6 (9.1)*</td>
<td></td>
</tr>
<tr>
<td>kₑₙₑ (kN m⁻¹)</td>
<td>17.8 (3.5)</td>
<td>18.6 (5.7)</td>
<td>19.2 (3.1)</td>
<td>18.5 (3.0)</td>
<td></td>
</tr>
</tbody>
</table>

Compensating strategy for decrements in propulsive capacity
or
protective behavior from mechanical stress?
The Stretch Reflex

Muscle spindles

Disfacilitation

⇒ kinematic reorganization
Subgroup analysis

![Graph showing subgroup analysis with pre-UT and post-UT SF (Hz) data.](image-url)
Subgroup analysis

![Graph showing changes in FOOT (°) before and after UT with significant differences indicated by asterisks.](image-url)
Males vs females

Pre-UTMB

Post-UTMB

Giandolini et al. *Footwear Science* 2013
Knee extensors

Pre-Post changes (%)

MVC Db100 Db10 TwPot

Male
Female

Plantar flexors

Conclusions

- Significant alterations of running patterns can be observed after ultra-marathon running.
- In particular, \(\Delta \) aerial time and \(\Delta z \) and \(\rightarrow \) duty cycle.
- Most of these changes seem to be dependent on the duration of the ultra-marathon.
- An intense exercise inducing significant amount of fatigue but no pain does not have the same consequences on running patterns.
 \(\rightarrow \) adjustments = protective behavior
- There may be sex differences in adaptations to ultra-marathon running.
Merci

www.ucalgary.ca/nmfl

gmillet@ucalgary.ca
Same trend in Europe

Hoffman et al. *Int J Hist Sports* 2010